skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Peres, L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The paper presents the effects of the storm‐time prompt penetration electric fields (PPEF) and traveling atmospheric disturbances (TADs) on the total electron content (TEC), foF2 and hmF2 in the American sector (north and south) during the geomagnetic storm on 23–24 April 2023. The data show a poleward shift of the Equatorial Ionization Anomaly (EIA) crests to 18°N and 20°S in the evening of 23 April (attributed to eastward PPEF) and the EIA crests remaining almost in the same latitudes after the PPEF reversed westward. The thermospheric neutral wind velocity, foF2, hmF2, and TEC variations show that TADs from the northern and southern high latitudes propagating equatorward and crossing the equator after midnight on 23 April. The meridional keograms of ΔTEC show the TAD structures in the north/south propagated with phase velocity 470/485 m/s, wave length 4,095/4,016 km and period 2.42/2.30 hr, respectively. The interactions of the TADs also appear to modify the wind velocities in low latitudes. The eastward PPEF and equatorward TADs also favored the development of a clear/not so clear F3 layer in northern/southern regions of the equator. 
    more » « less
  2. Abstract The spectral line profile of the atomic oxygen O1D23P2transition near 6300 Å in the airglow has been used for more than 50 years to extract neutral wind and temperature information from the F‐region ionosphere. A new spectral model and recent samples of this airglow emission in the presence of the nearby lambda‐doubled OH Meinel (9‐3) P2(2.5) emission lines underscores earlier cautions that OH can significantly distort the OI line center position and line width observed using a single‐etalon Fabry‐Perot interferometer (FPI). The consequence of these profile distortions in terms of the emission profile line width and Doppler position is a strong function of the selected etalon plate spacing. Single‐etalon Fabry‐Perot interferometers placed in the field for thermospheric measurements have widely varying etalon spacings, so that systematic wind biases caused by the OH line positions differ between instruments, complicating comparisons between sites. Based on the best current determinations of the OH and O1D line positions, the ideal gap for a single‐etalon FPI wind measurements places the OH emissions in the wings of the O1D spectral line profile. Optical systems that can accommodate prefilters with square passbands less than ∼3 Å in the optical beam can effectively block the OH contamination. When that is not possible, a method to fit for OH contamination and remove it in the spectral background of an active Fabry‐Perot system is evaluated. 
    more » « less
  3. Abstract The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/ c charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1 $$\pm 0.6$$ ± 0.6 % and 84.1 $$\pm 0.6$$ ± 0.6 %, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation. 
    more » « less
  4. Abstract The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype. 
    more » « less
  5. Abstract Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation. 
    more » « less
  6. Abstract DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6  $$\times $$ ×  6  $$\times $$ ×  6 m $$^3$$ 3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019–2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties. 
    more » « less
  7. Abstract The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 × 6 × 7.2 m 3 . The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components. 
    more » « less